Math 115
Spring 2019
Lecture 16

$$
\begin{aligned}
& ? a^{2}+b^{2}=c^{2} ? \\
& y==02 x+b=d=r t
\end{aligned}
$$

Ch. 4 Polynomial Expression \&
Exponential Rules

Mathematical Expressions
It is combination of numbers, variables, and operations. NO $=$ Sign.

$$
2 x^{2}-5 x, \frac{x^{2}-9}{x^{2}-4}, \sqrt{x^{2}-y^{2}}, \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1) we can evaluate ME.
2) we can Simplify M.E.

Evaluate $-2 x^{2}+8 x$ for $x=-3$.

$$
\begin{aligned}
-2 x^{2}+8 x & =-2(-3)^{2}+8(-3) \\
& =-2 \cdot 9+8(-3) \\
& =-27+(-24) \\
& =-51
\end{aligned}
$$

Given $x_{1}=2, y_{1}=-8, x_{2}=-3$, and $y_{2}=4$
Evaluate $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=\sqrt{(2--3)^{2}+(-8-4)^{2}}$

$$
\begin{aligned}
& =\sqrt{(2+3)^{2}+(-8-4)^{2}} \\
& =\sqrt{5^{2}+(-12)^{2}}=\sqrt{25+144} \\
& =\sqrt{169}=13
\end{aligned}
$$

Evaluate $\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ for $a=2, b=5$, and $c=-7$.

$$
\begin{aligned}
\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} & =\frac{-5-\sqrt{5^{2}-4(2)(-7)}}{2(2)} \\
& =\frac{-5-\sqrt{25-4(2)(-7)}}{4} \\
& =\frac{-5-\sqrt{25+56}}{4}=\frac{-5-\sqrt{81}}{4} \\
& =\frac{-5-9}{4}=\frac{-14}{4}=\frac{-7}{2}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& 5 x^{3}-6 x^{2}+14 x-8-2 x^{3}+6 x^{2}-10 x+8 \\
& =3 x^{3}+4 x
\end{aligned}
$$

$$
3\left(2 x^{2}-5 x+4\right)-2\left(3 x^{2}-7 x+6\right)
$$

$$
=6 x^{2}=15 x+12-6 x^{2}+14 x-12
$$

$$
=-1 x=-x
$$

Simplify:

$$
\begin{aligned}
& 4\left(x^{2}-2 x y-3 y^{2}\right)-2\left(2 x^{2}+5 x y-6 y^{2}\right) \\
= & 4 x^{2}-8 x y-12 y^{2}-4 x^{2}-10 x y+18 y^{2} \\
= & -18 x y
\end{aligned}
$$

Exponential Rules:
(1) $x^{n}=\underbrace{x \cdot x \cdot x \cdots x}_{n \text { times }}$
$x \rightarrow$ base
$n \rightarrow$ Exponent (Power)

$$
\begin{array}{ll}
4^{3}=4 \cdot 4 \cdot 4 & (-5 x)= \\
(-3)^{4}=(-3) \cdot(-3)(-3)(-3) & (-5 x)(-5 x)(-5 x) \cdots(-5 x) \\
\left(\frac{2}{5}\right)^{2}=\left(\frac{2}{5}\right) \cdot\left(\frac{2}{5}\right) & \left(x^{2} y^{3}\right)^{6}=\underbrace{\left(x^{2} y^{3}\right)\left(x^{2} y^{3}\right) \cdots\left(x^{3} y^{3}\right)}_{6 \text { times }}
\end{array}
$$

$$
\begin{aligned}
& \text { (2) } x^{1}=x \\
& 7^{1}=7 \quad(-7 x y)^{1}=-7 x y \\
& (-8)^{1}=-8 \quad\left(4 x^{2}-3 y^{3}\right)^{1}=4 x^{2}-3 y^{3} \\
& \left(\frac{3}{5}\right)^{1}=\frac{3}{5} \\
& \left(-8 x^{2} y^{5}\right)^{1}=-8 x^{2} y^{5} \\
& \text { (3) } x^{0}=1, x \neq 0 \\
& \begin{array}{l}
4^{0}=1 \\
(-25)^{0}=1
\end{array} \\
& 2019^{0}=1 \\
& \begin{array}{l}
(-25)=1 \\
-25^{0}=-1
\end{array} \\
& \left(2 x^{5}\right)^{0}=1, x \neq 0 \\
& \text { indeterminto }
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \text { 4) } x^{m} \cdot x^{n}=x^{m+n} \\
& x^{3} \cdot x^{5}=x^{3+5}=x^{8} \\
& x^{4} \cdot x^{6} \cdot x^{1}=x^{4+6+1}=x^{11} \\
& \left(2 x y^{3}\right)^{7} \cdot\left(2 x y^{3}\right)^{3}=\left(2 x y^{3}\right)^{7+3}=\left(2 x y^{3}\right)^{10} \\
& \left(\frac{-3 x^{2}}{5 y^{6}}\right)^{4} \cdot\left(\frac{-3 x^{2}}{5 y^{6}}\right)^{12}=\left(\frac{-3 x^{2}}{5 y^{6}}\right)^{16}
\end{aligned}
$$

$$
\begin{aligned}
& (5)\left(x^{m}\right)^{n}=x^{m \cdot n} \\
& \left(x^{4}\right)^{3}=x^{4 \cdot 3}=x^{12} \\
& \left(x^{7}\right)^{5} \cdot x^{10}=x^{35} \cdot x^{10}=x^{45} \\
& \left(x^{8}\right)^{2} \cdot\left(x^{2}\right)^{7}=x^{16} \cdot x^{14} \\
& =x^{16+14}=x^{30}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) }(x y)^{n}=x^{n} y^{n} \\
& (2 x)^{5}=2^{5} x^{5}=32 x^{5} \\
& \left(-3 x^{4}\right)^{3}=(-3)^{3}\left(x^{4}\right)^{3}=-27 x^{12} \\
& \left(-2 x^{5}\right)^{4} \cdot\left(5 x^{3}\right)^{2}=(-2)^{4}\left(x^{5}\right)^{4}(5)^{2}\left(x^{3}\right)^{2} \\
& =16 x^{20} \cdot 25 x^{6} \\
& =16.25 x^{20} x^{6}=400 x^{26}
\end{aligned}
$$

(1) Expand: $\left(-4 x^{2}\right)^{3}=\left(-4 x^{2}\right) \cdot\left(-4 x^{2}\right) \cdot\left(-4 x^{2}\right)$
(2) Simplify: $\left(\frac{2}{3}\right)^{1}-\left(\frac{1}{5}\right)^{0}=\frac{2}{3}-1=\frac{2}{3}-\frac{3}{3}$
(3) Simplify: $\left(x^{6}\right)^{8} \cdot\left(x^{2}\right)^{1}$

$$
=\frac{2-3}{3}
$$

$$
\begin{aligned}
& =x^{6.8} \cdot x^{2 \cdot 1} \\
& =x^{48} \cdot x^{2}=x^{48+2}=x^{50}
\end{aligned}
$$

(4)

$$
\text { Simplify: } \begin{aligned}
\left(-4 x^{2}\right)^{3} & =(-4)^{3}\left(x^{2}\right)^{3} \\
& =-64 x^{6}
\end{aligned}
$$

(5) Simplify: $\left(-10 x^{4}\right)^{3} \cdot\left(x^{-2}\right)^{6} ; x \neq 0$

$$
\begin{aligned}
& =(-10)^{3}\left(x^{4}\right)^{3} \cdot\left(x^{-2}\right)^{6} \\
& =-1000 x^{12} \cdot x^{-12} \\
& =-1000 x^{12+(-12)}=-1000 x^{1} \\
& =-1000
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \frac{x^{m}}{x^{n}}=x^{m-n} \\
& \frac{x^{7}}{x^{3}}=x^{7-3}=x^{4} \\
& \frac{\left(x^{4}\right)^{5}}{\left(x^{3}\right)^{4}}=\frac{x^{20}}{x^{12}}=x^{20-12}=x^{8} \\
& \frac{\left(2 x^{6}\right)^{4}}{\left(4 x^{12}\right)^{2}}=\frac{2^{4}\left(x^{6}\right)^{4}}{4^{2}\left(x^{12}\right)^{2}}=\frac{16 x^{24}}{16 x^{24}}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8) }\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}} \\
& \left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}=\frac{16}{81} \\
& \left(\frac{x^{6}}{y^{3}}\right)^{2}=\frac{\left(x^{6}\right)^{2}}{\left(y^{3}\right)^{2}}=\frac{x^{12}}{y^{6}} \\
& \left(\frac{-3 x^{5}}{4 y^{6}}\right)^{3}=\frac{(-3)^{3}\left(x^{5}\right)^{3}}{4^{3}\left(y^{6}\right)^{3}}=\frac{-27 x^{15}}{64 y^{18}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (9) } x^{-n}=\frac{1}{x^{n}} \\
& \begin{aligned}
x^{-5}=\frac{1}{x^{5}} & \left(x^{6}\right)^{-2}=x^{-12}=\frac{1}{x^{12}} \\
e^{-1}=\frac{1}{e^{1}}=\frac{1}{2} & \left(x^{5}\right)^{-3} \cdot\left(x^{-2}\right)^{5} \\
& =x^{-15} \cdot x^{-10} \\
& =x^{-25}=\frac{1}{x^{25}}
\end{aligned}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
\left(-2 x^{4} y^{-3}\right)^{5} & =(-2)^{5}\left(x^{4}\right)^{5}\left(y^{-3}\right)^{5} \\
& =-32 x^{20} y^{-15} \\
& =\frac{-32 x^{20}}{y^{15}}
\end{aligned}
$$

Exponential Rules:

1) $x^{n}=\underbrace{x \cdot x \cdot x \cdots x}_{n \text { times }}$
2) $x^{1}=x$
3) $x^{0}=1 ; x \neq 0$
4) $x^{m} \cdot x^{n}=x^{m+n}$
5) $\left(x^{m}\right)^{n}=x^{m \cdot n}$
6) $(x y)^{n}=x^{n} y^{n}$
7) $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
8) $\frac{x^{m}}{x^{n}}=x^{m-n}$
9) $x^{-n}=\frac{1}{x^{n}}$
10) $\frac{x^{-m}}{y^{-n}}=\frac{y^{n}}{x^{m}}$
11) $\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}$

Simplify

1) $\frac{x^{-4} y^{7}}{x^{6} y^{-8}}=\frac{y^{7} y^{8}}{x^{6} x^{4}}=\frac{y^{15}}{x^{10}}$
2) $\left(\frac{2 x^{6}}{3 y^{5}}\right)^{-3}=\left(\frac{3 y^{5}}{2 x^{6}}\right)^{3}=\frac{3^{3}\left(y^{5}\right)^{3}}{2^{3}\left(x^{6}\right)^{3}}$

$$
=\frac{27 y^{15}}{8 x^{18}}
$$

Simplify:
Hint:

$$
\left(\frac{-2 x^{-4}}{y^{-5}}\right)^{-4}
$$

work inside of (), take cane of -

work on SG 12 $\left\{\begin{array}{l}\text { for Tuesday. } \\ \text { It will be collected. }\end{array}\right.$

